
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Multiagent Reinforcement Learning Methods for

Resolving Demand – Capacity Imbalances

Theocharis Kravaris

University of Piraeus

Piraeus, Greece

George A. Vouros

University of Piraeus
Piraeus, Greece

georgev@unipi.gr

Christos Spatharis

University of Piraeus Research Center,
Piraeus, Greece

University of Ioannina,

Ioannina, Greece

Konstantinos Blekas

University of Piraeus Research Center,
Piraeus, Greece

University of Ioannina,

Ioannina, Greece

Jose Manuel Cordero Garcia

CRIDA

Madrid, Spain
jmcordero@crida.es

Abstract
In this article, we explore the computation of joint policies for

autonomous agents, representing flights, to resolve congestions

problems in the Air Traffic Management (ATM) domain in the

context of Demand-Capacity Balance (DCB) process. We

formalize the problem as a multi-agent Markov Decision Process

(MDP) towards deciding flight ground delays to resolve

imbalances, during the pre-tactical phase. To this end, we present

and evaluate multi-agent reinforcement learning methods. An

experimental study on real-world cases confirms the effectiveness

of our approach.

Keywords—Demand-Capacity Problem, Multi-agent system,

Reinforcement Learning

I. INTRODUCTION

Congestion problems, modeling situations where resources
of a limited capacity have to be shared by multiple agents
simultaneously, are ever present in the modern world. Most
notably, congestion problems appear regularly in various
traffic domains. It is of no surprise that they have drawn much
attention in the AI and autonomous agents research for at least
two decades now [3], and have been the focus of game
theoretic models for much longer [14].

In the air-traffic management (ATM) domain, congestion
problems arise naturally whenever demand of airspace use
exceeds capacity, resulting to hotspots. This is known as the
Demand and Capacity Balance (DCB) problem.

Specifically, the current ATM system worldwide is based
on a time-based operations paradigm. As the system deals with
an increasingly large number of flights, aiming to making
efficient use of resources, this implies some limitations to the
ATM system, often leading to DCB issues. These limitations
are resolved via airspace management or flow management
solutions, including regulations that generate delays (and costs)
for the entire system. These demand-capacity imbalances are
difficult to be predicted in pre-tactical phase (prior to
operation) as the existing ATM information is not accurate
enough during this phase.

Against this background, this article formalises the DCB
problem as a multi-agent system, where agents, represenmting

flights, aim to coordinate their joint actions with respect to
operational constraints on the use of airspace. We consider
planning air traffic management operations at the “pre-tactical”
stage: Given air sectors' limited capacity, the issue at hand is to
minimise scheduled flight arrival delays, and thus delay costs,
while ensuring efficient utilisation of airspace. The problem is
formulated as a multiagent MDP (MA-MDP). As part of this
formulation, we devise a reward function that takes into
account agents' contribution to DCB problems, ground delays
and implied cost when agents deviate from their schedule. We
then proceed to describe Collaborative Multiagent
Reinforcement Learning (MARL) methods for learning joint
policies towards resolving DCB problems, and explore the
efficacy of these methods in real-world scenarios.

Our goal is to minimize the average ground delay per flight
w.r.t. the number of flights with ground delay. In doing so, we
aim to distribute ground delays among flights without
penalizing a small number of them, and utilize efficiently the
airspace so as to have an even distribution of demand to sectors
in different periods.

Therefore, we consider only ground delays and
subsequently we succinctly call these “delays”.

The multiagent problem specification and corresponding
proposed methods allow to assess ground delays to individual
flights, always considering the joint effects of imposed delays
to the evolution of demand. While agents represent flights,
their environment comprises the airspace and other flights
comprising “traffic”. This is in contrast to regulating in a first-
come-first-regulated basis - as it is the case today. Considering
operational constraints for the joint performance of the tasks,
the proposed multiagent methods support each individual agent
to reconcile conflicting options (i.e. options creating hotspots)
jointly with others and jointly decide about individual policies
on delays, while possessing no information about the
preferences and payoffs of others.

The proposed MARL methods are evaluated to real-world
DCB problem cases, each one comprising flight plans for a
specific day, above Spain. The data sources used to produce
those cases include operational data regarding flight plans per
day of operation, data regarding sector configurations at any
given time, and reference values for the cost of strategic delay

to European airlines, currently used by SESAR 2020 Industrial
Research.

An initial observation from the application of the MARL

methods is that they, quite effectively, manage to provide

solutions to the DCB problems, imposing delays that result to

zero hotspots. By utilizing a variety of different metrics (such

as the number of flights with delay, the average delay per

flight with delay and average delay per flight, total delay time,

and delay distributions) we provide evidence on the potential

of the proposed methods to produce qualitative solutions:

Indeed, results are quite significant since, in most of the cases

the average delay per flight is reduced considerably, while a

small percentage of flights have delay more than half an hour,

while only a small percentage of flights get delay. To further

assess the quality of solutions computed, these are compared

to solutions provided by the Network Management

organization (Eurocontrol, CFMU).

We envisage the work laid out in this paper to be seen as a
first step towards devising agent-based methods for deciding
on delay policies for correlated aircraft trajectories at the pre-
tactical phase, answering the call for a transition to a Trajectory
Based Operations (TBO) paradigm.

The structure of this paper is as follows: Section 2 provides
a specification for the DCB problem, and Section 3 presents its
formulation within an MA-MDP framework. Section 4 then
presents the reinforcement learning methods proposed for
solving the problem, and Section 5 presents experimental
results. Section 6 presents related work and finally, Section 6
concludes the article outlining future research directions.

II. PROBLEM SPECIFICATION

As already pointed out, the current Air Traffic Management
(ATM) system leads to demand-capacity imbalances.

With the aim of overcoming ATM system drawbacks,
different initiatives, notably SESAR in Europe1 and Next Gen
in the US2 have promoted the transformation of the current
ATM paradigm towards a new, trajectory-based operations
(TBO) one: In the future ATM system, the trajectory becomes
the cornerstone upon which all the ATM capabilities will rely
on. The trajectory life cycle describes the different stages from
the trajectory planning, negotiation and agreement, to the
trajectory execution, amendment and modification.

This life cycle requires collaborative planning processes,
before operations: The envisioned advanced decision support
tools will exploit trajectory information to provide optimised
services to all ATM stakeholders. The proposed transformation
requires high-fidelity aircraft trajectory prediction capabilities,
supporting the trajectory life cycle at all stages efficiently.

The network effect resulting from the interactions of
multiple trajectories is not considered at all by state-of-the-art
techniques for assessing the impact of trafic to flights'
trajectories wr.t. operational constraints. Considering flight
trajectories in isolation from the overall ATM system may lead
to inefficiencies to trajectory planning (due for instance to
conflict resolution) and huge inaccuracies to assessing
trajectory execution. Accounting for network effects and their

implications on the joint execution of individual flights
requires considering interactions among trajectories;
moreover, it requires considering operational conditions that
influence any flight. Capturing aspects of that complexity, and
being able to devise methods that take the relevant information
into account, would greatly improve the current trajectory
prediction approaches. Our aim is to assess delays to be
imposed to trajectories towards resolving DCB problems.

The DCB problem (or process) considers two important
types of objects in the ATM system: aircraft trajectories and
airspace sectors.

 Sectors are air volumes segregating the airspace, each
defined as a group of airblocks. These are specified by a
geometry (the perimeter of their projection on earth) and their
lowest and highest altitudes. Airspace sectorization may be
done in different ways, depending on sectors’ configuration,
determining the active (open) sectors. Only one sector
configuration can be active at a time. Airspace sectorization
changes frequently during the day, given different operational
conditions and needs. This happens transparently for flights.

The capacity of sectors is of utmost importance: this
quantity determines the maximum number of flights flying
within a sector during any time period of specific duration (e.g.
in any 20' period).

 The demand for each sector is the quantity that specifies
the number of flights that co-occur during a time period within
a sector. The duration of any such period is equal to the
duration of period used for defining capacity. Demand must
not exceed sector capacity for any time interval.

 There are different types of measures to monitor the
demand evolution, with the most common ones being Hourly
Entry Count and Occupancy Count. In this work we consider
Hourly Entry Count, as this is the one used by network
managers at the pre-tactical stage.

 The Hourly Entry Count (HEC) for a given sector is
defined as the number of flights entering in the sector during a
time period, referred to as an Entry Counting Period (or
simply, counting period). HEC is defined to give a “picture” of
the entry traffic, taken at every time “step” value along a period
of fixed duration: The step value defines the time difference
between two consecutive Entry Counting Periods. The
Duration value defines the time difference between the start
and end times of an Entry Counting Period. For example, for a
20 minutes step value and a 60 minutes duration value, entry
counts correspond to pictures taken every 20 minutes, over a
total duration of 60 minutes.

Aircraft trajectories are series of spatio-temporal points of
the generic form (longi, lati, alti, ti), denoting the longitude,
latitude and altitude, respectively, of the aircraft at a specific
time point ti. Casting them into a DCB resolution setting,
trajectories may be seen as time series of events specifying the
entry and exit locations (coordinates + flight levels) and the
entry and exit times for the sectors crossed, or the time that the
flight will fly over specific sectors. Thus, given that each
trajectory is a sequence of timed positions in airspace, this
sequence can be exploited to compute the series of sectors that
each flight crosses, together with the entry and exit time for

1SESAR 2020, http://www.sesarju.eu/
2NextGen, https://www.faa.gov/nextgen/

http://www.sesarju.eu/
https://www.faa.gov/nextgen/

each of these sectors. For the first (last) sector of the flight,
where the departure (resp. arrival) airport resides, the entry
(resp. exit) time is the departure (resp. arrival) time. For flights
that cross the airspace but do not depart and/or arrive in any of
the sectors of the airspace of interest, we only consider the
entry and exit time for sectors within that airspace.

Therefore, we consider a finite set of discrete air sectors
R= {R1, R2,...} segregating the airspace.

These sectors are related to a set of operational constraints,
associated to their capacity, whose violation results to DCB
(congestion) problems: These are cases where DR,p > CR, where
p is a counting period of pre-defined duration dt, DR,p is the
demand for sector R during counting period p, and CR is the
capacity of the sector for any period of duration dt equal to the
counting period duration. These cases are capacity violation or
demand-capacity imbalance cases, resulting to hotspots.

Thus, a trajectory T in T is a time series of elements of the
form:

T={ (R1, entryt1, exitt1) (Rm, entrym, exitm) },

where Rl, l=1,...m is a sector in the airspace.

This information per trajectory suffices to measure the

demand for each of the sectors R  R in the airspace, in any
counting period p.

Specifically, the demand in sector R in period p is
DR,p=|TR,p|, i.e. the number of trajectories in TR,p, where

TR,p = {T  T | T=(…,(R, entryt , exitt),…), and the
temporal interval [entryt , exitt] overlaps with period p}.

In case of hotspots, trajectories requiring the use of the
sector R at the same period p, i.e. trajectories in TR,p, are
defined to be interacting trajectries for p and R.

The overall objective of the DCB process at any phase of
operations (Strategic, Planning and Tactical Phase) is to
optimise traffic flows according to air traffic control capacity
while enabling airlines to operate safe and efficient flights.
Planning operations start as early as possible - sometimes more
than one year in advance. Given that the objective is to protect
air traffic control service of overload [2], this service is always
looking for optimum traffic flow through a correct use of the
capacity, guaranteed: safety, better use of capacity, equity
among flights and airlines, information sharing among
stakeholders and fluency.

In this work we consider the demand-capacity process
during the pre-tactical phase, assuming a trajectory-based
operations environment with processes like RBT (Reference
Business Trajectory) / SBT (Shared Business Trajectory) in
place, enabling an enhanced accuracy of pre-tactical flight
information. Pre-tactical flow management is applied at least
six days prior to the day of operations, and consists of planning
and coordination activities.

An agent Ai is the aircraft performing a specific flight
trajectory (simply, trajectory), in a specific date and time.
Thus, we consider that agents and trajectories coincide in this
case and we may interchangeably speak of agents Ai,
trajectories, flights Ti, or agents Ai executing trajectories Ti.

Agents, as it will be specified, have own interests and
preferences, although they are assumed collaborative, and take
autonomous decisions on resolving hotspots: It must be noted
that in the DCB problem agents do not have communication
and monitoring restrictions, given that imbalances are resolved
at the planning phase, rather than during operation.

To resolve hotspots, agents have several degrees of
freedom: They may either change their trajectory, cross sectors
other than the congested ones, or change their schedule of
crossing the sectors. In this paper we consider only changing
the schedule of crossing sectors by imposing delays: i.e.,
shifting the whole trajectory by a specific amount of time.

Now, the problem is about agents to execute their
trajectories jointly, in an efficient and safe way, w.r.t.
resources' operational constraints.

Specifically, in the DCB problem the goal is to

 minimize the average delay (ratio of total delay to the
number of flights) w.r.t. the number of delayed flights;
so as to

 distribute delays among flights without penalising a
small number of them, and

 utilise efficiently the airspace so as to have an even
distribution of demand to sectors in all counting periods
within a total period of trajectories’ execution H.

To resolve a hotspot occuring in period p and sector R, a
subset of interacting trajectories in TR,p must be delayed. It
must be noted that agents have conflicting preferences since
they prefer to impose the smallest delay possible (preferably
none) to their own trajectory, while also executing their
planned trajectories safely and efficiently.

Clearly, imposing delays to trajectories may propagate
hotspots to a subsequent time period for the same and/or other
sectors crossed. Also, the sets of interacting tasks in different
periods and sectors may change. This can be done in many
different ways when imposing delays to flights, resulting to a
dynamic setting for agents, where the sets of interacting
trajectories do change according to agents' decisions.

Interacting agents contributing to hotspots are considered to
be “peers” given that they have to jointly decide on their
delays: The decision of one of them directly affects the others.
This implies that agents form “neighbourhoods” of peers.
Such neighbourhoods provide a way to take advantage of the
spatial and temporal sparsity of the problem: For instance, in
the DCB problem a flight crossing the northwest part of Spain
in the morning, will never interact in any direct manner with a
flight crossing the southeast part of the Iberian Peninsula at any
time, or with an evening flight that crosses the northwest part
of Spain. However, as mentioned above, these neighbourhoods
have to be dynamicaly updated when delays are imposed to
flights, given that trajectories that did not interact prior to any
delay may result to be interacting when delays are imposed.

The society of agents (A, E) is modelled as a coordination
graph with one vertex per agent Ai in A and any edge (Ai, Aj) in
E connecting agents with interacting trajectories in T. The set

of interacting agents, and thus edges, are dynamically updated
when new interacting pairs of trajectories appear.

N(Ai) denotes the neighbourhood of agent Ai, i.e. the set of
agents interacting with agent Ai in any period p and sector R,
including also itself. These are the peers of Ai.

The options available in the inventory of any agent Ai for
contributing to the resolution of hotspots may differ between
agents: These, for agent Ai are in Di ={0,1,2,..., MaxDelayi}.
We consider that these may be ordered by the preference of
agent Ai to any such option, according to the function γ(i):

Di. We do not assume that agents in A-{Αi} have any
information about γ(i). This represents the situation where
airlines set own options and preferences for delays even in
different individual own flights, depending on operational
circumstances, goals and constraints. We expect that the order
of preferences should be decreasing from 0 to MaxDelayi,
although, with a different pace for different agents.

Problem statement: Considering any two peers Ai and Aj
in the society (A, E), with Aj in N(Ai)-{Ai}, these agents must
select among the sets of available options Di and Dj
respectively, so as to increase their expected payoff w.r.t. their
preferences on options γ(i) and γ(j), and resolve the DCB
problem.

This problem specification emphasises on the following
problem aspects:

Agents (i.e. individual flights) need to coordinate their

strategies (i.e. chosen options to impose delays) to execute

their trajectories jointly with others, taking into account traffic,

w.r.t. their preferences and operational constraints;

Agents (i.e. individual flights) need to jointly explore and

discover how different combinations of delays affect the joint

performance of their trajectories w.r.t. the DCB process, given

that the way different trajectories do interact is not known

beforehand (agents do not know the interacting trajectories that

emerge due to own decisions and decisions of others, and of

course they do not know whether these interactions result to

hotspots i.e., demand-capacity imbalances); and

Agents' preferences on the options available may vary

depending on the trajectory performed, and are kept private;

There are multiple and interdependent hotspots that occur

in the total period H and agents have to resolve them jointly;

The setting is highly dynamic given that hotspots change
while agents choose their delay strategies, in ways that are
unpredictable for agents.

III. MDP FORMULATION

According to the problem formulation stated above, and
using the model of collaborative multi-agent MDP framework
[7], we assume:

The society of agents (A, E), as described above.

A time step t=t0, t1, t2, t3,..., tmax, where tmax- t0=H.

A local state per agent Ai at time t, comprising state

variables that correspond to (a) the delay imposed to the

trajectory Ti executed by Ai, ranging to Di={0,…MaxDelayi},

and (b) the number of hotspots in which Ai is involved in. Such

a local state is denoted st
i. The joint state st

Ag of a set of agents

Ag at time t is the tuple of the state variables for all agents in

Ag. A global (joint) state st at time t is the tuple of all agents'

local states.

The set of all joint states for any subset Ag of agents is

denoted StateAg, and the set of joint society states is denoted by

State.

The local strategy for agent Ai at time t, denoted by strt
i is

the action that Ai performs at that specific time point: Such an

action, in case the agent is still on ground, may be, either add to

its total delay a delay for until the next time instant, or not.

Thus, at each time point the agent has to take a binary decision.

When the agent flies, then its strategy is determined by the

intended trajectory.

The joint strategy of a subset of agents Ag of A executing
their trajectories (e.g. of N(Ai)) at time t, is a tuple of local
strategies, denoted by strt

Ag (e.g. strt
N(Ai)). The joint strategy

for all agents A at any time instant t is denoted strt
.

The set of all joint strategies for any subset Ag of A is
denoted StrategyAg, and the set of joint society strategies is
denoted by Strategy.

The state transition function Tr gives the transition to the

joint state st+1 based on the joint strategy strt taken in joint state

st. Formally

Tr: State  Strategy  State.

It must be noticed that the state transition per agent is
stochastic, given that no agent has a global view of the society,
of the decisions of others, and/or of changing sector
configurations, while its neighbourhood gets updated. Thus, no
agent can predict how the joint state can be affected in the next
time step. Thus, for agent Ai this transition function is actually

Tr: StateAi  StrategyAi  StateAi  [0,1],

denoting the transition probability p(st+1
i|st

i , strt
i).

The local reward of an agent Ai, denoted RwdAi, is the

reward that the agent gets by executing its own trajectory in a

specific joint state of its peers in N(Ai), i.e. by considering any

interacting trajectory, including itself. The joint reward,

denoted by RwdAg for a set of peers Ag specifies the reward

received by agents in Ag by executing their actions in their joint

state, according to their joint strategy.

The reward RwdAg for and subset Ag of A depends on the
participation (contribution) of agents in hotspots occurring
while executing their trajectories according to their joint
strategy strt

Ag in their joint state st
Ag, i.e. according to their

decided delays. Formally:

RwdAg(st
Ag, strt

Ag) = C(st
Ag, strt

Ag) - λ*DC(st
Ag, strt

Ag)

where,

C(st
Ag, strt

Ag) is a function that depends on the participation
of agents in hotspots while executing their joint strategy in
their joint state, and DC(st

Ag, strt
Ag) is a function aggregating

agents’ strategic delay costs.

The parameter λ is used for balancing between the number
of hotspots and delays imposed to agents towards achieving the
goal: Zero hotspots and the minimum possible delay per agent.

In the DCB problem, both functions C(st
Ag, strt

Ag) and
DC(st

Ag, strt
Ag) represent strategic delay costs: We have chosen

C(st
Ag, strt

Ag) to depend on the total duration of the period in
which agents fly over a congested sector. This is multiplied by
81 which is the average strategic delay cost per minute (in
Euros) in Europe when 92% of the flights do not have delays
[4]. If there is not any congestion, then this is a large positive
constant that represents the reward agents get by not
participating in any hotspot.

The actual form of C(st
Ag, strt

Ag) is as follows:

C(st
Ag, strt

Ag) =

where, TDC is the total duration in hotspots for agents in Ag.
The first case holds when there are hotspots in which agents
participate (thus, the total duration in hotspots, TDC, is above
0), while the second case holds when agents do not participate
in hotspots.

The DC(st
Ag, strt

Ag) component of the reward function
corresponds to the strategic delay cost when flights delay at
gate. In our implementation, this depends solely on the minutes
of delay and the aircraft type, as specified in [4]. As such, the
actual form of this function is as follows:

DC(st
Ag, strt

Ag) =

-

where DelayA is the delay imposed to the agent A
and is a function that returns the strategic
delay cost given the aircraft type of agent A and its delay.
Notice however that in the general case the function DC(st

Ag,
strt

Ag) could be taking into account additional airline-specific
strategic policies and considerations regarding flight delays.

A (local) policy of an agent Ai is a function πi: StateAi 

StrategyAi that returns local strategies for any given local state,

for Ai to execute its trajectory. The objective for any agent in

the society is to find an optimal policy πi that maximises the

expected discounted future return

 (s) =

for each state , while Ai executes its trajectory. The discount
factor δ, ranges in [0,1].

This model assumes the Markov property, assuming also
that rewards and transition probabilities are independent of
time. Thus, the state next to state s is denoted by s' and it is

independent of time. Subsequently, subscripts and superscripts
are avoided in cases where it is clear where a state or strategy
refers to.

IV. MARL ALGORITHMS

We now describe the proposed MARL methods to deal
with the multiagent joint DCB policy search problem. The key
concept includes interactions between trajectories.

Q-functions, or action-value functions, represent the future
discounted reward for a state s when deciding on a specific
strategy str for that state and behaving optimally from then on
[16]. The optimal policy for any agent A in state s is the one
maximizing the expected future discounted reward, i.e.
argmaxstrQ(s,str).

In the next paragraphs we describe three alternative
multiagent reinforcement learning approaches that take
advantage of the problem structure (i.e. interactions among
flights), considering that agents do not know the transition and
reward model (model-free methods) and interact concurrently
with all their peers.

A. Independent Reinforcement Learners (IndLearners)

In the Independent Reinforcement Learners (IRL)
framework, each agent learns its own policy independently
from the others and treats other agents as part of the
environment.

The independent Q-learning variant proposed in [6]
decomposes the global Q-function into a linear combination of
local agent-dependent Q-functions.

Q(s, str) =

Each local value, Qi, for agent Ai is calculated according to
the local state, s, and the local strategy, str.

The local value Qi is updated according to the temporal-
difference error, as follows:

= +

 α[+ δ -]

It must be noted that instead of the global reward Rwd(s,
str) used in [6], we use the reward received by the agent Ai,
taking into account only the local state and local strategy.
Furthermore, this method considers only local states and
strategies, and it is in contrast to the approach of Coordinated
Reinforcement Learning model proposed in [6], since that
model needs agents to know the maximising joint action in the
next state, the associated maximal expected future return, and
needs to estimate the Q-value in the global state.

B. Edge-Based Collaborative Reinforcement Learners

(EdgeBased)

This is a variant of the edge-based update sparse
cooperative Q-learning method proposed in [8].

Multiple agents are jointly interacting with the
environment.

Given two peer agents Ai and Aj connected by an edge in
the coordination graph, the Q-function for these agents is
denoted as Qij(sij,strij), where sij, with abuse of notation,
denotes the joint state related to the set of the two agents Ai and
Aj, and strij denotes the joint strategy for these two agents.

Half the sum of all edge-specific Q-functions defines the
global Q-function, i.e.

Q(s, str) = 1/2

The Q-learning update rule in this case is given by the
following equation:

 = + α [+

 + δ -] ,

where, str*ij in [8] is the best joint strategy for agents Ai
and Aj for the joint state s'ij.

In our method, the strategy str*ij is the best strategy known
by each agent and it is depicted directly from the agent's value
function, Qi(s,str), which is calculated as the summation of
local Qij values in its neighbourhood:

str*i = argmaxstri Qi(si,stri) , and

Qi(si,stri) = .

This is an approximation of the best action in each state,
which is improved, as the agents learn. We experimentally
found out that this approximation method offers comparable
quality and considerable improvement in methods’
computational efficiency than using
computationally/communication intensive aproximation
methods.

C. Agent-Based Collaborative Reinforcement Learners

(AgentBased)

This is a variant of the agent-based update sparse
cooperative Q-learning method proposed in [8]. As in
EdgeBased method, given two peer agents performing their
trajectories, Ai and Aj, their joint Q-function is denoted
succinctly Qij(sij,strij), where sij and strij denote the joint state
and strategy, respectively, related to the two agents, as defined
in the previous section. The update rule is then:

 = +

 α []

where, str*k is the best known strategy for agent Ak in state
s'k, k in {i,j}. Agents, compute their local Q-functions and their
best local strategy as in the EdgeBased method.

The main difference between the two previous methods and
the IndLearners approach is that while the later take into
account own states and strategies without sharing any
information with others, the two collaborative approaches

consider interacting agents, their joint policies and compute
“joint” Q-values.

The two collaborative approaches differ on the way Q-
values are updated: In particular, the EdgeBased update
approach updates Q-values by propagating edge-specific
temporal differences to the corresponding peer agents (i.e.
those connected via the edge considered) and only along
corresponding edges, considering local rewards of agents
shared in their neighbourhood. On the otrher hand, the
AgentBased update approach updates Q-values by propagating
agents’ temporal differences (i.e. those learned from their
entire neighbourhood) to their peers along connecting edges,
while it considers agents’ joint reward. In doing so, in the
agent-based update approach agents apply their strategies and
learn from their entire neighbourhoods: Thus, the effects of
their strategies, gathered from their neighbourhood are
propagated to each of the peers along the edges.

V. EVALUATION RESULTS

A. Evaluation cases and metrics

To evaluate the proposed methods, we have constructed
evaluation cases of varying difficulty. Each case corresponds to
a specific day of 2016 above Spain and its difficulty has been
determined by means of the number of flights involved, the
average number of interacting flights per flight (which is
translated to the average degree for each agent in the
coordination graph, connecting that agent with its peers), the
maximum delay imposed to flights for that day to resolve DCB
problems according to CFMU data, the average delay for all
regulated flights according to CFMU data, and the number of
hotspots in relation to the number of flights participating in
these hotspots.

The specific method used for constructing these evaluation
cases is as follows:

The first step is to collect per chosen day all the Flight
Plans as provided by the Spanish Operational Data source.
Each Flight Plan may be associated to multiple Flight Plan
Messages. Evaluation cases exploit only the plan specified in
the last message arriving before takeoff. In order to identify it,
the timestamp of the message arrival is compared to the
Estimated Entry Date and Time to FIR (HFIR). Flight Plans
spanning in two consecutive days (e.g. a flight could take off
before and land after midnight) are considered for both days. In
addition, the model of the aircraft is stored for the calculation
of strategic delay costs. Finally, flights are distinguished
between commercial and non-commercial, using their ID and
the associated Flight Rules. Only commercial flights are
subject to delays, although all flights participate to the
computation of demand evolution.

After collecting the Flight Plans described above, we cross-
check them with the CFMU dataset considering only flights the
CFMU dataset records information about, while others are
dropped. The cross identification is achieved by utilizing the
ID of the flight, the departure and destination airport and the
Initial Off-Block Time (IOBT). Moreover, delays imposed
from the CFMU to resolve hotspots occurring inside the
Spanish Airspace, are identified per flight.

Flight Plans specify a trajectory crossing air volumes. This
sequence of events is exploited to compute the series of active
sectors that each flight crosses- depending on the open airspace
configurations, together with the entry and exit time for each of
these sectors. For the first (last) sector of the flight, where the
departure (resp. arrival) airport resides, the entry (resp. exit)
time is the departure (resp. arrival) time. As already pointed
out, there may exist flights that cross the airspace but do not
depart and/or arrive in any of the sectors of our airspace: In that
case we only consider the entry and exit time for the sectors
within the airspace of our interest.

It must be noticed that given the delay imposed to a flight,
sectors crossed by its trajectory may vary, due to the changing
configurations. This may result to a number of alternative
specifications of a single flight trajectory (each one crossing a
different set of sectors), one for each possible delay.

Table 1 provides an overall description of the ten
evaluation cases, identified by an integer and named by the day
in which it occurred. Specifically, Table 1 specifies per case
the following attributes (columns from left to right):

Number of flights: The number of flights for the
corresponding day above Spain.

Average Degree in Coordination Graph (min/max): This
indicates in average the number of interacting flights for each
of the agents (flights) in each evaluation case. It is expected
that as the coordination graph becomes more “dense”, i.e. as
the average degree per vertice (agent) increases, the problem
becomes more computationally demanding. Min/Max indicates
the minimum and the maximum degree reported in the
coordination graph per evaluation case, while ignoring zeros.

MaxDelay (according to CFMU data): This is the
MaxDelay for all flights: It is the maximum delay reported by
CFMU data for that particular day.

Average Delay (according to CFMU data): This is the
average delay for regulated flights reported by CFMU data for
that particular day.

Number of regulated flights (type C – according to CFMU
data): This is the number of flights with regulations of type C
(i.e. delays due to DCB problems) reported by the CFMU for
that particular day.

It must be noted that regulated flights by the Network
Manager leave a large number of hotspots unresolved in any of
the cases considered.

Number of hotspots (number of flights): This is the number
of hotspots that exist in each case, together (in parenthesis)
with the number of flights that participate to those hotspots
(each flight may participate in different combinations of
hotspots). This is also an indication of problems’ difficulty: Of
course, this difficulty may also depend on other factors such as
the duration of flights to hotspots, the excess on capacity for
these hotspots etc. It is not the purpose of this deliverable to
delve into these issues, but we do need to indicate major
differences among evaluation cases.

To measure the efficiency of the methods and the quality of
solutions achieved, we have specified qualitative criteria
(metrics) as follows:

TABLE I. EVALUATION CASES

Learning curves of all methods showing the computational

efficiency of the methods: These curves show per round of

methods’ application the average delay per flight in the

evaluation case, as agents learn the ground-delay-policy to be

applied. As algorithms converge to solutions, the number of

hotspots should be reduced and eventually reach to zero, while

the average delay should be reduced, signifying the

computation of a solution. Therefore, the speed of reaching that

point (zero hotspots) and the round at which methods stabilize

agents’ joint policy (remaining to zero hotspots and to a

specific value for flights’ average delay - without oscillating

between non-solutions and/or solutions, and/or varying average

delay values) signify the computational efficiency of the

method to reaching solutions. Of course, in case a method

cannot reach a solution for a specific case, it may converge to a

joint policy that results to more than zero hotspots.

Number of flights with delay: This is the number of flights

with at least 1min of delay, as decided by any of the methods.

Average delays: We report on (a) the average delay per

flight with delay, as well as (b) the average delay per flight.

Distribution of delays to flights: To show how delays are

distributed to flights, we provide histograms showing the

number of flights to several ranges of delay duration (e.g. 10-

29 min.) up to MaxDelay.

Evolution of demand: To further delve into the quality of
solutions provided by the proposed methods, we provide for
highly-demanded sectors the evolution of demand per counting
period at the initial state (i.e. at the problem state) and the
evolution of demand at the solution state (i.e. at the state where
each method has converged to a joint policy for agents).

Evaluation
case

Number
of Flights
(Agents)

Average
Degree in
Coordinat
ion Graph
(non-zero
min/max)

MaxDelay
(CFMU
data)

Average
Delay
(CFMU
data)

Num of
Regulated
Flights
(type C)
(CFMU
data)

Num
of
hotspot
s (Num
of
flights)

1: Aug4 5544
6.41 (17-
120) 66 12.41 179

33
(853)

2: Aug7 5868
8.03 (23-
121) 112 17.54 475

42
(1104)

3: Aug10 5500
5.92 (19-
125) 59 15.37 402

27
(759)

4: Aug13 6000
10.89
(22-105) 147 16.02 434

53
(1460)

5: Jul2 5572
6.39 (29-
107) 80 17.89 521

29
(778)

6: Jul10 5824
9.98 (21-
175) 175 17.35 305

51
(1320)

7: Jul12 5408
5.84 (21-
95) 95 18.55 281

28
(820)

8: Jun5 5348
6.77 (20-
111) 84 14.99 162

32
(803)

9: Sep2 5498
5.41 (21-
112) 88 13.95 165

27
(754)

10: Sep3 5788
5.24 (18-
77) 61 14.41 297

26
(783)

All measurements provided, result by averaging the
measurements recorded by 5 independent experiments per case
and method.

B. Evaluation results

Regarding the delays imposed to flights according to
CFMU data, as already pointed out, these do not resolve all
DCB problems: I.e. even if we impose delays to flights
according to the CFMU regulations we still have a large
number of hotspots. Therefore, while the proposed methods do
increase the number of flights with delay in all evaluation
cases, the prescribed delays, applied to flights, result to 0
hotspots. Among the MARL methods, the EdgeBased method
manages to have the less number of flights with delay among
the rest of the methods in most of the cases. This is shown in
Fig.1(b).

Regarding the average delay per flight with delay, as results
reported in Fig.1(a) indicate, all methods manage to reduce
considerably the CFMU average delay per flight with delay, in
all cases. This is a remarkable result for all methods.

The EdgeBased approach seems to perform better than the
other methods in all cases, except in three of them where
IndLearners are more effective in reducing the delay. It should
be noticed that in the majority of the cases the difference
between the best and the second best average delays is quite
large. This has not happened in the 5th case (Jul2), where all
methods increase the average delay per flight with delay.
Indeed, this case is considered to be the most difficult among
all cases.

Considering the average delay per flight (actually the
difference to the average delay per flight according to CFMU),
as Fig.1(c) shows, in most of the evaluation cases, the proposed
MARL methods managed to reduce the average delay
compared to CFMU average delay per flight, while only in one
of the methods the MARL methods have average delay per
flight greater than 0.5 min compared to the CFMU average
delay per flight: Among the methods, the EdgeBased shows to
be more effective. It should be noted again that MARL
methods manage to resolve all hotspots in any evaluation case,
in contrast to what happens to CFMU regulations.

Learning curves in Fig.2 show that methods manage to

converge effectively, given that until episode 7200 they are

programmed to intervene exploitation with exploration. Due to

space constraints, we provide results from two of the cases:

Aug10 as being representative of all cases, and Jul2 which

seems to be the most difficult among the cases. However,

there are cases where methods can converge even earlier.

Specifically, IndLearners manage to converge, or at least

approximate effectively the convergence point, even earlier

than episode 6000, except in one case – Jul2. All methods

converge effectively to a solution after exploration round

7200, approaching the converge point. For Jul2 all methods

converge quite late (i.e. after a large number of episodes).

(a)

(b)

(c)

Fig. 1. (a) Av. Delay per flight with delay (y-axis) per evaluation case (x-

axis) and method, (b) Number of flights with delay (y-axis) per evaluation

case (x-axis) and method, (c) Av. Delay per flight achieved by MARL method
minus the Av.Delay per flight recorded in CFMU data per evaluation case (x-

axis): High negative values are in favor of the MARL methods.

Regarding the fairness of methods and delving more into

the quality of solutions: Each of the agents – in collaboration

with its neighbors in the coordination graph (i.e. agents that

correspond to interacting flights) - decides on own ground

delay towards resolving the DCB problems in which it

participates. According to the reward function that each agent

evaluates independently from others, it aims to zero the

hotspots in which it participates and minimize own delay.

Therefore, as shown in Fig.3 for two of the cases (again,

Aug10 and Jul2), the number of flights are reduced drastically

as delays get larger. This happens in all cases. However, in the

most difficult of the cases (e.g. Jul2) there are flights with

large delays (e.g. more than 60’).

Fig. 2. Learning curves of all MARL methods for the Aug13 (top) and Jul2

(bottom) scenarios.

Fig. 3. Distribution of flights to ranges of delays for two evaluation cases:

Aug13 (top), Jul2 (bottom).

Fig. 4. Evolution of demand in Jul2 at the initial state (top- without imposing

any delay), and at the solution state achieved by IndLearners for the most
demanded sector in Jul2. The horizontal line shows the sector capacity.

Fig.3 provides further comparison of distribution of delays
from agent-based methods and CFMU. It must be noticed that
delays imposed by CFMU to the majority of the flights are
within the range of 10 to 29 minutes. In few cases, CFMU
imposes delays until 60 minutes to a considerable number of
flights (e.g Aug10, Jul2).

Finally, Fig.4 shows the evolution of demand in different
periods for the most demanded sector in the difficult case
(Jul2) in (a) the initial problem, and (b) after imposing the
ground delays decided by the IndLearners method. Results
from the other methods and cases are similar (actually very
close to those presented by the IndLearners) so we do not
include them here. As Fig.4 shows, methods do “push” excess
of capacity in subsequent periods within the same sector, or in
other sectors (not shown here). This happens in small scale, i.e.
solutions affect the demand for only 2 or 3 subsequent periods
within the sector: This shows that delays imposed do not
increase the workload per sector considerably, leaving much
space for increasing further the demand, if this is also the case
in the initial problem. It must be noted that interesting cases
occuring (e.g. the one in period 36 in Fig.4) are difficult to
explain due to complexity phenomena occuring among
interacting flights and changing sector configurations.

VI. RELATED WORK

Congestion problems have been studied extensively in
game theory (see, e.g., [11][12][13]). Rosenthal [14] was the
first to introduce and study congestion games, along with the
existence of Nash equilibria. The use of multiagent systems
techniques to tackle congestion problems in traffic and
transprotation domains has been the focus of much work
during the past two decades. Bazzan et al. [2] were among the
first to frame congestion problems as a multiagent coordination
problem, while Dresner and Stone [5] proposed a multiagent
reservations-based traffic intersections control mechanism.

More recently, Agogino and Tumer [1] propose a
multiagent framework for air-traffic control, and have
evaluated their methods using real world airports' data. Agents

are assigned to specific ground locations throughout the
airspace. The approach however does not guarantee to resolve
hotspots and handles only up to two interdependent congestion
instances.

Malialis et al. [10] use Q-learning to address multiagent
congestion problems, while employing the idea of “resource
abstraction”: that is, they take into account the existence of
abstract groups of congested resources, and provide increased
punishment to agents when they are about to consume a
congested resource. They evaluate their approach in road
traffic simulation settings using up to 1000 agents, but do not
tackle multiple congestion instances (e.g. hostspots), and do
not use real-world data.

The only works we are aware of, which actually employ

collaborative multi-agent RL methods, and which also apply

them to resolve the pre-tactical DCB problem, is that of [9]

and [15]. The work reported here extends these works by

presenting extensive experimental results concerning the

performance of MARL, providing evidence to the efficacy of

the methods in real-world ATM settings.

VII. CONCLUDING REMARKS

In this paper we formulated the problem of resolving demand-
capacity imbalances (DCB) in ATM as a coordination problem
between agents controlling a multiagent MDP. We then
proposed the use of MARL techniques to solve this problem, as
a new paradigm for resolving DCB imbalances at the pre-
tactical phase of operations. Our methods employ a novel,
generic reward function that takes into account the agents'
participation in hotspots, and also the strategic cost of delay.

We demonstrated the effectiveness of our methods by
evaluating them on real-world scenarios encompassing
thousands of agents in complex / dynamic settings.
Experimental results in real-world problems show the potential
of the proposed methods, in terms of efficiency (i.e. speed of
convergence) and efficacy (in terms of quality of solutions
achieved). In few words, collaborative MARL methods are
promising to resolving real-world complex DCB problems in
ATM.

More than that, we envisage the work laid out in this paper
to be seen as a first step towards devising agent-based methods
for prescribing the effect of traffic to correlated aircraft
trajectories, contributing to the transition to a trajectory-based
air-traffic management paradigm. This will hopefully help
overcome the shortcomings of the currently used ATM
paradigm, and as such, could in time allow commercial
aircrafts “to fly their preferred trajectories without being
constrained by airspace configurations”1.

ACKNOWLEDGMENT

This work has been supported by the DART project, which

has received funding from the SESAR Joint Undertaking

under grant agreement No 699299 under European Union

Horizon 2020 research and innovation programme; It has been

partially funded by National Matching Funds 2017-2018 of

1 https://www.sesarju.eu/vision

the Greek Government, and more specifically by the General

Secretariat for Research and Technology (GSRT), related to

DART project. For more details, please see the DART

project's website, http://www.dart-research.eu.

REFERENCES

[1] Adrian K Agogino and Kagan Tumer. 2012. A multiagent approach to
managing air traffic flow. Autonomous Agents and Multi-Agent
Systems 24, 1 (2012), 1–25.

[2] Air Traffic Flow and Capacity Management (ATFCM). (2011).
Eurocontrol, http://www.eurocontrol.int/articles/air-traffic-flow-and-
capacity-management.

[3] Ana L. C. Bazzan, Joachim Wahle, and Franziska Klügl. 1999. Agents
in Traffic Modelling - From Reactive to Social Behaviour. In KI-99:
Advances in Artificial Intelligence, 23rd Annual German Conference
on Artificial Intelligence, Bonn, Germany, September 13-15, 1999,
Proceedings. 303–306.

[4] Andrew J Cook and Graham Tanner. 2015. European airline delay cost
reference values.
(2015). http://www.eurocontrol.int/publications/european-airline-
delaycost- reference-values.

[5] K. Dresner and P. Stone. 2004. Multiagent traffic management: A
reservation-based intersection control mechanism. In Proceedings of the
3rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’04). 530–537.

[6] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. 2002.
Coordinated Reinforcement Learning. In In Proceedings of the ICML-
2002 The Nineteenth International Conference on Machine Learning.
227–234.

[7] Carlos Guestrin. 2003. Planning Under Uncertainty in Complex
Structured Environments. Ph.D. Dissertation. Stanford, CA,
USA. Advisor(s) Koller, Daphne. AAI3104233.

[8] Jelle R. Kok and Nikos Vlassis. 2006. Collaborative Multiagent
Reinforcement Learning by Payoff Propagation. J. Mach. Learn. Res.
7 (Dec. 2006), 1789–
1828. http://dl.acm.org/citation.cfm?id=1248547.1248612

[9] Theocharis Kravaris, et al. 2017. Learning Policies for Resolving
Demand-Capacity Imbalances During Pre-tactical Air Traffic
Management. In Multiagent System Technologies - 15th German
Conference, MATES 2017, Leipzig, Germany, August 23-26,
2017, Proceedings. 238–255.

[10] Kleanthis Malialis, Sam Devlin, and Daniel Kudenko. 2016. Resource
Abstraction for Reinforcement Learning in Multiagent Congestion
Problems. In Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent System (AAMAS ’16). 503–511.

[11] C. Meyers. Network flow problems and congestion games: complexity
and approximation results. Ph.D. Dissertation, 2016, Cambridge,
MA, USA.

[12] I. Milchtaich. Social Optimality and Cooperation in Nonatomic
Congestion Games. Journal of Economic Theory 114 (2004), 56–87.

[13] Michal Penn, Maria Polukarov, and Moshe Tennenholtz. 2005.
Congestion games with failures. In Proceedings 6th ACM Conference
on Electronic Commerce (EC- 2005), Vancouver, BC, Canada, June 5-8,
2005. 259–268.

[14] R.W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash
Equilibria. International Journal of Game Theory 2 (1973), 65–67.

[15] Christos Spatharis et al. 2018. Multiagent Reinforcement Learning
Methods to Resolve Demand Capacity Balance Problems, 10th Hellenic
A.I. Conference, SETN 2018, Patras, Greece
doi>10.1145/3200947.3201010

[16] Richard S Sutton and Andrew G Barto. 2014. Reinforcement learning:
An introduction. MIT press Cambridge.

http://www.eurocontrol.int/articles/air-traffic-flow-and-capacity-management
http://www.eurocontrol.int/articles/air-traffic-flow-and-capacity-management
http://dl.acm.org/citation.cfm?id=1248547.1248612
https://doi.org/10.1145/3200947.3201010

