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Abstract  
In this article, we explore the computation of joint policies for 

autonomous agents, representing flights, to resolve congestions 

problems in the Air Traffic Management (ATM) domain in the 

context of Demand-Capacity Balance (DCB) process. We 

formalize the problem as a multi-agent Markov Decision Process 

(MDP) towards deciding flight ground delays to resolve 

imbalances, during the pre-tactical phase. To this end, we present 

and evaluate multi-agent reinforcement learning methods. An 

experimental study on real-world cases confirms the effectiveness 

of our approach. 

Keywords—Demand-Capacity Problem, Multi-agent system, 

Reinforcement Learning 

I. INTRODUCTION 

Congestion problems, modeling situations where resources 
of a limited capacity have to be shared by multiple agents 
simultaneously, are ever present in the modern world. Most 
notably, congestion problems appear regularly in various 
traffic domains. It is of no surprise that they have drawn much 
attention in the AI and autonomous agents research for at least 
two decades now [3], and have been the focus of game 
theoretic models for much longer [14]. 

In the air-traffic management (ATM) domain, congestion 
problems arise naturally whenever demand of airspace use 
exceeds capacity, resulting to hotspots. This is known as the 
Demand and Capacity Balance (DCB) problem. 

Specifically, the current ATM system worldwide is based 
on a time-based operations paradigm. As the system deals with 
an increasingly large number of flights, aiming to making 
efficient use of resources, this implies some limitations to the 
ATM system, often leading to DCB issues. These limitations 
are resolved via airspace management or flow management 
solutions, including regulations that generate delays (and costs) 
for the entire system. These demand-capacity imbalances are 
difficult to be predicted in pre-tactical phase (prior to 
operation) as the existing ATM information is not accurate 
enough during this phase. 

Against this background, this article formalises the DCB 
problem as a multi-agent system, where agents, represenmting 

flights,  aim to coordinate their joint actions with respect to 
operational constraints on the use of airspace. We consider 
planning air traffic management operations at the “pre-tactical” 
stage: Given air sectors' limited capacity, the issue at hand is to 
minimise scheduled flight arrival delays, and thus delay costs, 
while ensuring efficient utilisation of airspace. The  problem is 
formulated as a multiagent MDP (MA-MDP). As part of this 
formulation, we devise a reward function that takes into 
account agents' contribution to DCB problems, ground delays 
and implied cost when agents deviate from their schedule. We 
then proceed to describe Collaborative Multiagent 
Reinforcement Learning (MARL) methods for learning joint 
policies towards resolving DCB problems, and explore the 
efficacy of these methods in real-world scenarios.  

Our goal is to minimize the average ground delay per flight 
w.r.t. the number of flights with ground delay. In doing so, we 
aim to distribute ground delays among flights without 
penalizing a small number of them, and utilize efficiently the 
airspace so as to have an even distribution of demand to sectors 
in different periods. 

Therefore, we consider only ground delays and 
subsequently we succinctly call these “delays”. 

The multiagent problem specification and corresponding 
proposed methods allow to assess ground delays to individual 
flights, always considering the joint effects of imposed delays 
to the evolution of demand. While agents represent flights, 
their  environment comprises the airspace and other flights 
comprising “traffic”. This is in contrast to regulating in a first-
come-first-regulated basis - as it is the case today. Considering 
operational constraints for the joint performance of the tasks, 
the proposed multiagent methods support each individual agent 
to reconcile conflicting options (i.e. options creating hotspots) 
jointly with others and jointly decide about individual policies 
on delays, while possessing no information about the 
preferences and payoffs of others.  

The proposed MARL methods are evaluated to real-world 
DCB problem cases, each one comprising flight plans for a 
specific day, above Spain. The data sources used to produce 
those cases include operational data regarding flight plans per 
day of operation, data regarding sector configurations at any 
given time, and reference values for the cost of strategic delay 



to European airlines, currently used by SESAR 2020 Industrial 
Research. 

An initial observation from the application of the MARL 

methods is that they, quite effectively, manage to provide 

solutions to the DCB problems, imposing delays that result to 

zero hotspots. By utilizing a variety of different metrics (such 

as the number of flights with delay, the average delay per 

flight with delay and average delay per flight, total delay time, 

and delay distributions) we provide evidence on the potential 

of the proposed methods to produce qualitative solutions: 

Indeed, results are quite significant since, in most of the cases 

the average delay per flight is reduced considerably, while a 

small percentage of flights have delay more than half an hour, 

while only a small percentage of flights get delay. To further 

assess the quality of solutions computed, these are compared 

to solutions provided by the Network Management 

organization (Eurocontrol, CFMU). 

We envisage the work laid out in this paper to be seen as a 
first step towards devising agent-based methods for deciding 
on delay policies for correlated aircraft trajectories at the pre-
tactical phase, answering the call for a transition to a Trajectory 
Based Operations (TBO) paradigm.  

The structure of this paper is as follows: Section 2 provides 
a specification for the DCB problem, and Section 3 presents its 
formulation within an MA-MDP framework. Section 4 then 
presents the reinforcement learning methods proposed for 
solving the problem, and Section 5 presents experimental 
results. Section 6 presents related work and finally, Section 6 
concludes the article outlining future research directions. 

II. PROBLEM SPECIFICATION 

As already pointed out, the current Air Traffic Management 
(ATM) system leads to demand-capacity imbalances.  

With the aim of overcoming ATM system drawbacks, 
different initiatives, notably SESAR in Europe1 and Next Gen 
in the US2 have promoted the transformation of the current 
ATM paradigm towards a new, trajectory-based operations 
(TBO) one: In the future ATM system, the trajectory becomes 
the cornerstone upon which all the ATM capabilities will rely 
on. The trajectory life cycle describes the different stages from 
the trajectory planning, negotiation and agreement, to the 
trajectory execution, amendment and modification.  

This life cycle requires collaborative planning processes, 
before operations: The envisioned advanced decision support 
tools will exploit trajectory information to provide optimised 
services to all ATM stakeholders. The proposed transformation 
requires high-fidelity aircraft trajectory prediction capabilities, 
supporting the trajectory life cycle at all stages efficiently.   

The network effect resulting from the interactions of 
multiple trajectories is not considered at all by state-of-the-art 
techniques for assessing the impact of trafic to flights' 
trajectories wr.t. operational constraints. Considering flight 
trajectories in isolation from the overall ATM system may lead 
to inefficiencies to trajectory planning (due for instance to 
conflict resolution) and huge inaccuracies to assessing 
trajectory execution.  Accounting for network effects and their 

implications on the joint execution of individual flights 
requires considering interactions among  trajectories; 
moreover, it requires considering operational conditions that 
influence any flight. Capturing aspects of that complexity, and 
being able to devise methods that take the relevant information 
into account, would greatly improve the current trajectory 
prediction approaches. Our aim is to assess delays to be 
imposed to trajectories towards resolving DCB problems.  

The DCB problem (or process) considers two important 
types of objects in the ATM system: aircraft trajectories and 
airspace sectors. 

 Sectors are air volumes segregating the airspace, each 
defined as a group of airblocks. These are specified by a 
geometry (the perimeter of their projection on earth) and their 
lowest and highest altitudes. Airspace sectorization may be 
done in different ways, depending on sectors’ configuration, 
determining the active (open) sectors. Only one sector 
configuration can be  active at a time. Airspace sectorization 
changes frequently during the day, given different operational 
conditions and needs. This happens transparently for flights. 

The capacity of sectors is of utmost importance: this 
quantity determines the maximum number of flights flying 
within a sector during any time period of specific duration (e.g. 
in any 20' period). 

 The demand for each sector is the quantity that specifies 
the number of flights that co-occur during a time period within 
a sector. The duration of any such period is equal to the 
duration of  period used for defining capacity. Demand must 
not exceed sector capacity for any time interval.  

 There are different types of measures to monitor the 
demand evolution, with the most common ones being Hourly 
Entry Count and Occupancy Count. In this work we consider 
Hourly Entry Count, as this is the one used by network 
managers at the pre-tactical stage. 

 The  Hourly Entry Count (HEC) for a given sector is 
defined as the number of flights entering in the sector during a 
time period, referred to as an Entry Counting Period (or 
simply, counting period). HEC is defined to give a “picture” of 
the entry traffic, taken at every time “step” value along a period 
of fixed duration: The step value defines the time difference 
between two consecutive Entry Counting Periods.  The 
Duration value defines the time difference between the start 
and end times of an Entry Counting Period. For example, for a 
20 minutes step value and a 60 minutes duration value, entry 
counts correspond to pictures taken every 20 minutes, over  a 
total duration of 60 minutes. 

Aircraft trajectories are series of spatio-temporal points of 
the generic form (longi, lati, alti, ti), denoting the longitude, 
latitude and altitude, respectively, of the aircraft at a specific 
time point ti. Casting them into a DCB resolution setting, 
trajectories may be seen as time series of events specifying the 
entry and exit locations (coordinates + flight levels) and the 
entry and exit times for the sectors crossed, or the time that the 
flight will fly over specific sectors. Thus, given that each 
trajectory is a sequence of timed positions in airspace, this 
sequence can be exploited to compute the series of sectors that 
each flight crosses, together with the entry and exit time for 

1SESAR 2020, http://www.sesarju.eu/ 
2NextGen, https://www.faa.gov/nextgen/ 
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each of these sectors. For the first (last) sector of the flight, 
where the departure (resp. arrival) airport resides, the entry 
(resp. exit) time is the departure (resp. arrival) time. For flights 
that cross the airspace but do not depart and/or arrive in any of 
the sectors of the airspace of interest, we only consider the 
entry and exit time for sectors within that airspace. 

Therefore, we consider a finite set of discrete air sectors    
R= {R1, R2,...} segregating the airspace. 

These sectors are related to a set of operational constraints, 
associated to their capacity, whose violation results to DCB 
(congestion) problems: These are cases where DR,p > CR, where 
p is a counting period of pre-defined duration dt, DR,p is the 
demand for sector R during counting period p, and CR is the 
capacity of the sector for any period of duration dt equal to the 
counting period duration. These cases are capacity violation or 
demand-capacity imbalance cases, resulting to hotspots.  

Thus, a trajectory T in T is a time series of elements of the 
form: 

T={ (R1, entryt1, exitt1) .... (Rm, entrym, exitm) }, 

where Rl, l=1,...m is a sector in the airspace. 

This information per trajectory suffices to measure the 

demand for each of the sectors R  R in the airspace, in any 
counting period p.  

Specifically, the demand in sector R in period p is  
DR,p=|TR,p|, i.e. the number of trajectories in TR,p, where 

TR,p = {T  T | T=(…,(R, entryt , exitt),…), and  the 
temporal interval [entryt , exitt]  overlaps with period p}. 

In case of hotspots, trajectories requiring the use of the 
sector R at the same period p, i.e. trajectories in TR,p, are 
defined to be interacting trajectries for p and R. 

The overall objective of the DCB process at any phase of 
operations (Strategic, Planning and Tactical Phase) is to 
optimise traffic flows according to air traffic control capacity 
while enabling airlines to operate safe and efficient flights. 
Planning operations start as early as possible - sometimes more 
than one year in advance. Given that the objective is to protect 
air traffic control service of overload [2], this service is always 
looking for optimum traffic flow through a correct use of the 
capacity, guaranteed: safety, better use of capacity, equity 
among flights and airlines, information sharing among 
stakeholders and fluency. 

In this work we consider the demand-capacity process 
during the pre-tactical phase, assuming a trajectory-based 
operations environment with processes like RBT (Reference 
Business Trajectory) / SBT (Shared Business Trajectory) in 
place, enabling an enhanced accuracy of pre-tactical flight 
information. Pre-tactical flow management is applied at least 
six days prior to the day of operations, and consists of planning 
and coordination activities.  

An agent Ai is the aircraft performing a specific flight 
trajectory (simply, trajectory), in a specific date and time. 
Thus, we consider that agents and trajectories coincide in this 
case and we may interchangeably speak of agents Ai, 
trajectories, flights Ti, or agents Ai executing trajectories Ti. 

Agents, as it will be specified, have own interests and 
preferences, although they are assumed collaborative, and take 
autonomous decisions on resolving hotspots: It must be noted 
that in the DCB problem agents do not have communication 
and monitoring restrictions, given that imbalances are resolved 
at the planning phase, rather than during operation. 

To resolve hotspots, agents have several degrees of 
freedom: They may either change their trajectory, cross sectors 
other than the congested ones, or change their schedule of 
crossing the sectors. In this paper we consider only changing 
the schedule of crossing sectors by imposing delays: i.e., 
shifting the whole trajectory by a specific amount of time.  

Now, the problem is about agents to execute their 
trajectories jointly, in an efficient and safe way, w.r.t. 
resources' operational constraints.  

Specifically, in the DCB problem the goal is to  

 minimize the average delay (ratio of total delay to the 
number of flights) w.r.t. the number of delayed flights; 
so as to 

 distribute delays among flights without penalising a 
small number of them, and 

 utilise efficiently the airspace so as to have an even 
distribution of demand to sectors in all counting periods 
within a total period of trajectories’ execution H. 

To resolve a hotspot occuring in period p and sector R, a 
subset of interacting trajectories in TR,p must be delayed. It 
must be noted that agents have conflicting preferences since 
they prefer  to impose the smallest delay possible (preferably 
none) to their own trajectory, while also executing their 
planned trajectories safely and efficiently.  

Clearly, imposing delays to trajectories may propagate 
hotspots to a subsequent time period for the same and/or other 
sectors crossed. Also, the sets of interacting tasks in different 
periods and sectors may change. This can be done in many 
different ways when imposing delays to flights, resulting to a  
dynamic setting for agents, where  the sets of interacting 
trajectories do change according to agents' decisions.  

Interacting agents contributing to hotspots are considered to 
be “peers” given that they have to jointly decide on their 
delays: The decision of one of them directly affects the others. 
This implies that agents form “neighbourhoods” of peers.  
Such neighbourhoods  provide a way to take advantage of the 
spatial and temporal sparsity of the problem: For instance, in 
the DCB problem a flight crossing the northwest part of Spain 
in the morning, will never interact in any direct manner with a 
flight crossing the southeast part of the Iberian Peninsula at any 
time, or with an evening flight that crosses the northwest part 
of Spain. However, as mentioned above, these neighbourhoods 
have to be dynamicaly updated when delays are imposed to 
flights, given that trajectories that did not interact prior to any 
delay may result to be interacting when delays are imposed.  

The society of agents (A, E) is modelled as a coordination 
graph with one vertex per agent Ai in A and any edge (Ai, Aj) in 
E connecting agents with interacting trajectories in T.  The set 



of interacting agents, and thus edges, are dynamically updated 
when new interacting pairs of trajectories appear. 

N(Ai) denotes the neighbourhood of agent Ai, i.e. the set of 
agents interacting with agent Ai in any period p and sector R, 
including also itself. These are the peers of Ai. 

The options available in the inventory of any agent Ai for 
contributing to the resolution of hotspots may differ between 
agents: These, for agent Ai are in Di ={0,1,2,..., MaxDelayi}. 
We consider that these may be ordered by the preference of 
agent Ai to any such option, according to the function γ(i): 

Di. We do not assume that agents in A-{Αi} have any 
information about γ(i). This represents the situation where 
airlines set own options and preferences for delays even in 
different individual own flights, depending on operational 
circumstances, goals and constraints. We expect that the order 
of preferences should be decreasing from 0 to MaxDelayi, 
although, with a different pace for different agents. 

Problem statement: Considering any two peers Ai and Aj 
in the society (A, E), with Aj in N(Ai)-{Ai}, these agents must 
select among the sets of available options Di and Dj 
respectively, so as to increase their expected payoff w.r.t. their 
preferences on options γ(i) and γ(j), and resolve the DCB 
problem. 

This problem specification emphasises on the following 
problem aspects:  

Agents (i.e. individual flights) need to coordinate their 

strategies (i.e. chosen options to impose delays) to execute 

their trajectories jointly with others, taking into account traffic, 

w.r.t. their preferences and operational constraints;  

Agents (i.e. individual flights) need to jointly explore and 

discover how different combinations of delays affect the joint 

performance of their trajectories w.r.t. the DCB process, given 

that the way different trajectories do interact is not known 

beforehand (agents do not know the interacting trajectories that 

emerge due to own decisions and decisions of others, and of 

course they do not know whether these interactions result to 

hotspots i.e., demand-capacity imbalances); and 

Agents' preferences on the options available may vary 

depending on the trajectory performed, and are kept private; 

There are multiple and interdependent hotspots that occur 

in the total period H and agents have to resolve them jointly; 

The setting is highly dynamic given that hotspots change 
while agents choose their delay strategies, in ways that are 
unpredictable for agents. 

III. MDP FORMULATION 

According to the problem formulation stated above, and 
using the model of collaborative multi-agent MDP framework 
[7], we assume:  

The society of agents (A, E), as described above. 

A time step t=t0, t1, t2, t3,..., tmax, where tmax- t0=H. 

A local state per agent Ai at time t, comprising state 

variables that correspond to (a) the delay imposed to the 

trajectory Ti executed by Ai, ranging to Di={0,…MaxDelayi}, 

and (b) the number of hotspots in which Ai is involved in. Such 

a local state is denoted st
i. The joint state st

Ag of a set of agents 

Ag at time t is the tuple of the state variables for all agents in 

Ag. A global (joint) state st at time t is the tuple of all agents' 

local states.  

The set of all joint states for any subset Ag of agents is 

denoted StateAg, and the set of joint society states is denoted by 

State. 

The local strategy for agent Ai at time t, denoted by strt
i is 

the action that Ai performs at that specific time point: Such an 

action, in case the agent is still on ground, may be, either add to 

its total delay a delay for until the next time instant, or not.  

Thus, at each time point the agent has to take a binary decision. 

When the agent flies, then its strategy is determined by the 

intended trajectory.  

The joint strategy of a subset of agents Ag of A executing 
their trajectories (e.g. of N(Ai)) at time t, is a tuple of local 
strategies, denoted by strt

Ag (e.g. strt
N(Ai)).  The joint strategy 

for all agents A at any time instant t is denoted strt
. 

The set of all joint strategies for any subset Ag of A is 
denoted StrategyAg, and the set of joint society strategies is 
denoted by Strategy. 

The state transition function Tr gives the transition to the 

joint state st+1 based on the joint strategy strt taken in joint state 

st. Formally  

Tr: State  Strategy  State.  

It must be noticed that the state transition per agent is 
stochastic, given that no agent has a global view of the society, 
of the decisions of others, and/or of changing sector 
configurations, while its neighbourhood gets updated. Thus, no 
agent can predict how the joint state can be affected in the next 
time step. Thus, for agent Ai this transition function is actually  

Tr: StateAi  StrategyAi   StateAi  [0,1], 

denoting the transition probability p(st+1
i|st

i , strt
i).  

The local reward of an agent Ai, denoted RwdAi, is the 

reward that the agent gets by executing its own trajectory in a 

specific joint state of its peers in N(Ai), i.e. by considering any 

interacting trajectory, including itself. The joint reward, 

denoted by RwdAg for a set of peers Ag specifies the reward 

received by agents in Ag by executing their actions in their joint 

state, according to their joint strategy.   

The reward RwdAg for and subset Ag of A depends on the 
participation (contribution) of agents in hotspots occurring 
while executing their trajectories according to their joint 
strategy strt

Ag in their joint state st
Ag, i.e. according to their 

decided delays. Formally: 

RwdAg(st
Ag, strt

Ag) = C(st
Ag, strt

Ag) - λ*DC(st
Ag, strt

Ag) 

where, 



C(st
Ag, strt

Ag) is a function that depends on the participation 
of agents in hotspots while executing their joint strategy in 
their joint state, and DC(st

Ag, strt
Ag) is a function aggregating 

agents’ strategic delay costs. 

The parameter λ is used for balancing between the number 
of hotspots and delays imposed to agents towards achieving the 
goal: Zero hotspots and the minimum possible delay per agent.  

In the DCB problem, both functions C(st
Ag, strt

Ag) and 
DC(st

Ag, strt
Ag) represent strategic delay costs: We have chosen         

C(st
Ag, strt

Ag)  to depend on the total duration of the period in  
which  agents fly over a congested sector. This is multiplied by 
81 which is the average strategic delay cost per minute (in 
Euros) in Europe when 92% of the flights do not have delays 
[4]. If there is not any congestion, then this is a large positive 
constant that represents the reward agents get by not 
participating in any hotspot.  

The actual form of C(st
Ag, strt

Ag)  is as follows: 

 

C(st
Ag, strt

Ag)  =  

 

where, TDC is the total duration in hotspots for agents in Ag. 
The first case holds when there are hotspots in which agents 
participate (thus, the total duration in hotspots, TDC, is above 
0), while the second case holds when agents do not participate 
in hotspots. 

The DC(st
Ag, strt

Ag)  component of the reward function 
corresponds to the strategic delay cost when flights delay at 
gate. In our implementation, this depends solely on the minutes 
of delay and the aircraft type, as specified in [4]. As such, the 
actual form of this function is as follows: 

DC(st
Ag, strt

Ag) = 

-  

where DelayA is the delay imposed to the agent A 
and  is a function that returns the strategic 
delay cost given the aircraft type of agent A and its delay. 
Notice however that in the general case the function DC(st

Ag, 
strt

Ag) could be taking into account additional airline-specific 
strategic policies and considerations regarding flight delays. 

A (local) policy of an agent Ai is a function πi: StateAi  

StrategyAi that returns local strategies for any given local state, 

for Ai to execute its trajectory. The objective for any agent in 

the society is to find an optimal policy πi that maximises the 

expected discounted future return  

 (s) =  

 

for each state , while Ai executes its trajectory. The discount 
factor δ, ranges in [0,1].  

This model assumes the Markov property, assuming also 
that rewards and transition probabilities are independent of 
time. Thus, the state next to state s is denoted by s' and it is 

independent of time. Subsequently, subscripts and superscripts 
are avoided in cases where it is clear where a state or strategy 
refers to. 

IV. MARL ALGORITHMS 

We now describe the proposed MARL methods to deal 
with the multiagent joint DCB policy search problem. The key 
concept includes interactions between trajectories.  

Q-functions, or action-value functions, represent the future 
discounted reward for a state s when deciding on a specific 
strategy str for that state and behaving optimally from then on 
[16]. The optimal policy for any agent A in state s is the one 
maximizing the expected future discounted reward, i.e. 
argmaxstrQ(s,str).  

In the next paragraphs we describe three alternative 
multiagent reinforcement learning approaches that take 
advantage of the problem structure (i.e. interactions among 
flights), considering that agents do not know the transition and 
reward model (model-free methods) and interact concurrently 
with all their peers. 

A. Independent Reinforcement Learners (IndLearners) 

In the Independent Reinforcement Learners (IRL) 
framework, each agent learns its own policy independently 
from the others and treats other agents as part of the 
environment.  

The independent Q-learning variant proposed in [6] 
decomposes the global Q-function into a linear combination of 
local agent-dependent Q-functions.  

Q(s, str) =   

Each local value, Qi, for agent Ai is calculated according to 
the local state, s, and the local strategy, str.  

The local value Qi is updated according to the temporal-
difference error, as follows: 

=  +  

 α[  + δ - ]  

It must be noted that instead of the global reward Rwd(s, 
str) used in [6], we use the  reward received by the agent Ai, 
taking into account only the local state and local strategy. 
Furthermore, this method considers only local states and 
strategies, and it is in contrast to the approach of Coordinated 
Reinforcement Learning model proposed in [6], since that 
model needs agents to know the maximising joint action in the 
next state, the associated maximal expected future return, and 
needs to estimate the Q-value in the global state.  

B. Edge-Based Collaborative Reinforcement Learners 

(EdgeBased) 

This is a variant of the edge-based update sparse 
cooperative Q-learning method proposed in [8].  



Multiple agents are jointly interacting with the 
environment.   

Given two peer agents Ai and  Aj connected by an edge in 
the coordination graph, the Q-function for these agents is 
denoted as  Qij(sij,strij), where sij, with abuse of notation, 
denotes the joint state related to the set of the two agents Ai and 
Aj, and  strij denotes  the joint strategy for these two agents.  

Half the sum of all edge-specific Q-functions defines the 
global Q-function, i.e. 

Q(s, str) = 1/2   

The Q-learning update rule in this case is given by the 
following equation: 

 = + α [ +   

   + δ -  ] , 

where, str*ij  in [8] is the best joint strategy for agents Ai 
and Aj for the joint state s'ij. 

In our method, the strategy str*ij  is the best strategy known 
by each agent and it is depicted directly from the agent's value 
function, Qi(s,str), which is calculated as the summation of 
local Qij values in its neighbourhood: 

str*i =  argmaxstri Qi(si,stri) , and   

Qi(si,stri)  = . 

This is an approximation of the best action in each state, 
which is improved, as the agents learn. We experimentally 
found out that this approximation method offers comparable 
quality and considerable improvement in methods’ 
computational efficiency than using 
computationally/communication intensive aproximation 
methods. 

C. Agent-Based Collaborative Reinforcement Learners 

(AgentBased) 

This is a variant of the agent-based update sparse 
cooperative Q-learning method proposed in [8]. As in 
EdgeBased method, given two peer agents performing their 
trajectories, Ai and  Aj, their joint Q-function is denoted 
succinctly Qij(sij,strij), where sij and strij denote the joint state 
and strategy, respectively, related to the two agents, as defined 
in the previous section. The update rule is then: 

 =  +  

 α [ ] 

where, str*k is the best known strategy for agent Ak in state 
s'k, k in {i,j}. Agents, compute their local Q-functions and their 
best local strategy as in the EdgeBased method. 

The main difference between the two previous methods and 
the IndLearners approach is that while the later take into 
account own states and strategies without sharing any 
information with others, the two collaborative approaches 

consider interacting agents, their joint policies and compute 
“joint” Q-values. 

The two collaborative approaches differ on the way Q-
values are updated: In particular, the EdgeBased update 
approach  updates Q-values by propagating edge-specific 
temporal differences to the corresponding peer agents (i.e. 
those connected via the edge considered) and only along 
corresponding edges, considering local rewards of agents 
shared in their neighbourhood. On the otrher hand, the 
AgentBased update approach updates Q-values by propagating 
agents’ temporal differences (i.e. those learned from their 
entire neighbourhood) to their peers along connecting edges, 
while it considers agents’ joint reward. In doing so, in the 
agent-based update approach agents apply their strategies and 
learn from their entire neighbourhoods:  Thus, the effects of 
their strategies, gathered from their neighbourhood are 
propagated to each of the peers along the edges.  

V. EVALUATION RESULTS 

A. Evaluation cases and metrics 

To evaluate the proposed methods, we have constructed 
evaluation cases of varying difficulty. Each case corresponds to 
a specific day of 2016 above Spain and its difficulty has been 
determined by means of the number of flights involved, the 
average number of interacting flights per flight (which is 
translated to the average degree for each agent in the 
coordination graph, connecting that agent with its peers), the 
maximum delay imposed to flights for that day to resolve DCB 
problems according to CFMU data, the average delay for all 
regulated flights according to CFMU data, and the number of 
hotspots  in relation to the number of flights participating in 
these hotspots.  

The specific method used for constructing these evaluation 
cases is as follows: 

The first step is to collect per chosen day all the Flight 
Plans as provided by the Spanish Operational Data source. 
Each Flight Plan may be associated to multiple Flight Plan 
Messages. Evaluation cases exploit only the plan specified in 
the last message arriving before takeoff. In order to identify it, 
the timestamp of the message arrival is compared to the 
Estimated Entry Date and Time to FIR (HFIR). Flight Plans 
spanning in two consecutive days (e.g. a flight could take off 
before and land after midnight) are considered for both days. In 
addition, the model of the aircraft is stored for the calculation 
of strategic delay costs. Finally, flights are distinguished 
between commercial and non-commercial, using their ID and 
the associated Flight Rules. Only commercial flights are 
subject to delays, although all flights participate to the 
computation of demand evolution. 

After collecting the Flight Plans described above, we cross-
check them with the CFMU dataset considering only flights the 
CFMU dataset records information about, while others are 
dropped. The cross identification is achieved by utilizing the 
ID of the flight, the departure and destination airport and the 
Initial Off-Block Time (IOBT). Moreover, delays imposed 
from the CFMU to resolve hotspots occurring inside the 
Spanish Airspace, are identified per flight. 



Flight Plans specify a trajectory crossing air volumes. This 
sequence of events is exploited to compute the series of active 
sectors that each flight crosses- depending on the open airspace 
configurations, together with the entry and exit time for each of 
these sectors. For the first (last) sector of the flight, where the 
departure (resp. arrival) airport resides, the entry (resp. exit) 
time is the departure (resp. arrival) time. As already pointed 
out, there may exist flights that cross the airspace but do not 
depart and/or arrive in any of the sectors of our airspace: In that 
case we only consider the entry and exit time for the sectors 
within the airspace of our interest. 

It must be noticed that given the delay imposed to a flight, 
sectors crossed by its trajectory may vary, due to the changing 
configurations. This may result to a number of alternative 
specifications of a single flight trajectory (each one crossing a 
different set of sectors), one for each possible delay.  

Table 1 provides an overall description of the ten 
evaluation cases, identified by an integer and named by the day 
in which it occurred. Specifically, Table 1 specifies per case 
the following attributes (columns from left to right): 

Number of flights:  The number of flights for the 
corresponding day above Spain.  

Average Degree in Coordination Graph (min/max): This 
indicates in average the number of interacting flights for each 
of the agents (flights) in each evaluation case. It is expected 
that as the coordination graph becomes more “dense”, i.e. as 
the average degree per vertice (agent) increases, the problem 
becomes more computationally demanding. Min/Max indicates 
the minimum and the maximum degree reported in the 
coordination graph per evaluation case, while ignoring zeros. 

MaxDelay (according to CFMU data): This is the 
MaxDelay for all flights: It is the maximum delay reported by 
CFMU data for that particular day. 

Average Delay (according to CFMU data): This is the 
average delay for regulated flights reported by CFMU data for 
that particular day. 

Number of regulated flights (type C – according to CFMU 
data): This is the number of flights with regulations of type C 
(i.e. delays due to DCB problems) reported by the CFMU for 
that particular day. 

It must be noted that regulated flights by the Network 
Manager leave a large number of hotspots unresolved in any of 
the cases considered. 

Number of hotspots (number of flights): This is the number 
of hotspots that exist in each case, together (in parenthesis) 
with the number of flights that participate to those hotspots 
(each flight may participate in different combinations of 
hotspots). This is also an indication of problems’ difficulty: Of 
course, this difficulty may also depend on other factors such as 
the duration of flights to hotspots, the excess on capacity for 
these hotspots etc.  It is not the purpose of this deliverable to 
delve into these issues, but we do need to indicate major 
differences among evaluation cases. 

To measure the efficiency of the methods and the quality of 
solutions achieved, we have specified qualitative criteria 
(metrics) as follows: 

TABLE I.  EVALUATION CASES 

 

Learning curves of all methods showing the computational 

efficiency of the methods: These curves show per round of 

methods’ application the average delay per flight in the 

evaluation case, as agents learn the ground-delay-policy to be 

applied. As algorithms converge to solutions, the number of 

hotspots should be reduced and eventually reach to zero, while 

the average delay should be reduced, signifying the 

computation of a solution. Therefore, the speed of reaching that 

point (zero hotspots) and the round at which methods stabilize 

agents’ joint policy (remaining to zero hotspots and to a 

specific value for flights’ average delay - without oscillating 

between non-solutions and/or solutions, and/or varying average 

delay values) signify the computational efficiency of the 

method to reaching solutions. Of course, in case a method 

cannot reach a solution for a specific case, it may converge to a 

joint policy that results to more than zero hotspots.  

Number of flights with delay: This is the number of flights 

with at least 1min of delay, as decided by any of the methods. 

Average delays: We report on (a) the average delay per 

flight with delay, as well as (b) the average delay per flight.  

Distribution of delays to flights: To show how delays are 

distributed to flights, we provide histograms showing the 

number of flights to several ranges of delay duration (e.g. 10-

29 min.) up to MaxDelay.  

Evolution of demand: To further delve into the quality of 
solutions provided by the proposed methods, we provide for 
highly-demanded sectors the evolution of demand per counting 
period at the initial state (i.e. at the problem state) and the 
evolution of demand at the solution state (i.e. at the state where 
each method has converged to a joint policy for agents). 

 
 
Evaluation 
case  

Number 
of Flights 
(Agents) 

Average 
Degree in 
Coordinat
ion Graph 
(non-zero 
min/max) 

MaxDelay 
(CFMU 
data) 

Average 
Delay 
(CFMU 
data) 

Num of 
Regulated 
Flights 
(type C) 
(CFMU 
data) 

Num 
of 
hotspot
s (Num 
of 
flights) 

1: Aug4 5544 
6.41 (17-
120) 66 12.41 179 

33 
(853) 

2: Aug7 5868 
8.03 (23-
121) 112 17.54 475 

42 
(1104) 

3: Aug10 5500 
5.92 (19-
125) 59 15.37 402 

27 
(759) 

4: Aug13 6000 
10.89 
(22-105) 147 16.02 434 

53 
(1460) 

5: Jul2 5572 
6.39 (29-
107) 80 17.89 521 

29 
(778) 

6: Jul10 5824 
9.98 (21-
175) 175 17.35 305 

51 
(1320) 

7: Jul12 5408 
5.84 (21-
95) 95 18.55 281 

28 
(820) 

8: Jun5 5348 
6.77 (20-
111) 84 14.99 162 

32 
(803) 

9: Sep2 5498 
5.41 (21-
112) 88 13.95 165 

27 
(754) 

10: Sep3 5788 
5.24 (18-
77) 61 14.41 297 

26 
(783) 



All measurements provided, result by averaging the 
measurements recorded by 5 independent experiments per case 
and method. 

B. Evaluation results 

Regarding the delays imposed to flights according to 
CFMU data, as already pointed out, these do not resolve all 
DCB problems: I.e. even if we impose delays to flights 
according to the CFMU regulations we still have a large 
number of hotspots. Therefore, while the proposed methods do 
increase the number of flights with delay in all evaluation 
cases, the prescribed delays, applied to flights, result to 0 
hotspots. Among the MARL methods, the EdgeBased method 
manages to have the less number of flights with delay among 
the rest of the methods in most of the cases. This is shown in 
Fig.1(b). 

Regarding the average delay per flight with delay, as results 
reported in Fig.1(a) indicate, all methods manage to reduce 
considerably the CFMU average delay per flight with delay, in 
all cases. This is a remarkable result for all methods. 

The EdgeBased approach seems to perform better than the 
other methods in all cases, except in three of them where 
IndLearners are more effective in reducing the delay. It should 
be noticed that in the majority of the cases the difference 
between the best and the second best average delays is quite 
large. This has not happened in the 5th case (Jul2), where all 
methods increase the average delay per flight with delay. 
Indeed, this case is considered to be the most difficult among 
all cases. 

Considering the average delay per flight (actually the 
difference to the average delay per flight according to CFMU), 
as Fig.1(c) shows, in most of the evaluation cases, the proposed 
MARL methods managed to reduce the average delay 
compared to CFMU average delay per flight, while only in one 
of the methods the MARL methods have average delay per 
flight greater than 0.5 min compared to the CFMU average 
delay per flight: Among the methods, the EdgeBased shows to 
be more effective. It should be noted again that MARL 
methods manage to resolve all hotspots in any evaluation case, 
in contrast to what happens to CFMU regulations. 

Learning curves in Fig.2 show that methods manage to 

converge effectively, given that until episode 7200 they are 

programmed to intervene exploitation with exploration. Due to 

space constraints, we provide results from two of the cases: 

Aug10 as being representative of all cases, and Jul2 which 

seems to be the most difficult among the cases. However, 

there are cases where methods can converge even earlier. 

Specifically, IndLearners manage to converge, or at least 

approximate effectively the convergence point, even earlier 

than episode 6000, except in one case – Jul2. All methods 

converge effectively to a solution after exploration round 

7200, approaching the converge point. For Jul2 all methods 

converge quite late (i.e. after a large number of episodes).  

 
(a) 

 

(b) 

 

(c) 

Fig. 1. (a) Av. Delay per flight with delay (y-axis) per evaluation case (x-

axis) and method, (b) Number of flights with delay (y-axis) per evaluation 

case (x-axis) and method, (c) Av. Delay per flight achieved by MARL method 
minus the Av.Delay per flight recorded in CFMU data per evaluation case (x-

axis): High negative values are in favor of the MARL methods. 

Regarding the fairness of methods and delving more into 

the quality of solutions: Each of the agents – in collaboration 

with its neighbors in the coordination graph (i.e. agents that 

correspond to interacting flights) - decides on own ground 

delay towards resolving the DCB problems in which it 

participates. According to the reward function that each agent 

evaluates independently from others, it aims to zero the 

hotspots in which it participates and minimize own delay. 

Therefore, as shown in Fig.3 for two of the cases (again, 

Aug10 and Jul2), the number of flights are reduced drastically 

as delays get larger. This happens in all cases. However, in the 

most difficult of the cases (e.g. Jul2) there are flights with 

large delays (e.g. more than 60’).  



 

Fig. 2. Learning curves of all MARL methods for the Aug13 (top) and Jul2 

(bottom) scenarios. 

 

Fig. 3. Distribution of flights to ranges of delays for two evaluation cases: 

Aug13 (top), Jul2 (bottom). 

 

 

Fig. 4. Evolution of demand in Jul2 at the initial state (top- without imposing 

any delay), and at the solution state achieved by IndLearners for the most 
demanded sector in Jul2. The horizontal line shows the sector capacity. 

Fig.3 provides further comparison of distribution of delays 
from agent-based methods and CFMU. It must be noticed that 
delays imposed by CFMU to the majority of the flights are 
within the range of 10 to 29 minutes. In few cases, CFMU 
imposes delays until 60 minutes to a considerable number of 
flights (e.g Aug10, Jul2).  

Finally, Fig.4 shows the evolution of demand in different 
periods for the most demanded sector in the difficult case 
(Jul2) in (a) the initial problem, and (b) after imposing the 
ground delays decided by the IndLearners method. Results 
from the other methods and cases are similar (actually very 
close to those presented by the IndLearners) so we do not 
include them here. As Fig.4 shows, methods do “push” excess 
of capacity in subsequent periods within the same sector, or in 
other sectors (not shown here). This happens in small scale, i.e. 
solutions affect the demand for only 2 or 3 subsequent periods 
within the sector: This shows that delays imposed do not 
increase the workload per sector considerably, leaving much 
space for increasing further the demand, if this is also the case 
in the initial problem. It must be noted that interesting cases 
occuring (e.g. the one in period 36 in Fig.4) are difficult to 
explain due to complexity phenomena occuring among 
interacting flights and changing sector configurations. 

VI. RELATED WORK 

Congestion problems have been studied extensively in 
game theory (see, e.g., [11][12][13]). Rosenthal [14]  was the 
first to introduce and study congestion games, along with the 
existence of Nash equilibria. The use of multiagent systems 
techniques to tackle congestion problems in traffic and 
transprotation domains has been the focus of much work 
during the past two decades. Bazzan et al. [2] were among the 
first to frame congestion problems as a multiagent coordination 
problem, while  Dresner and Stone [5] proposed a multiagent 
reservations-based traffic intersections control mechanism. 

More recently, Agogino and Tumer [1] propose a 
multiagent framework for air-traffic control, and have 
evaluated their methods using real world airports' data. Agents 



are assigned to specific ground locations throughout the 
airspace. The approach however does not guarantee to resolve 
hotspots and handles only up to two interdependent congestion 
instances. 

Malialis et al. [10] use Q-learning to address multiagent 
congestion problems, while employing the idea of “resource 
abstraction”: that is, they take into account the existence of 
abstract groups of congested resources, and provide increased 
punishment to agents when they are about to consume a 
congested resource. They evaluate their approach in road 
traffic simulation settings using up to 1000 agents, but do not 
tackle multiple congestion instances (e.g. hostspots), and do 
not use real-world data.  

The only works we are aware of, which actually employ 

collaborative multi-agent RL methods, and which also apply 

them to resolve the pre-tactical DCB problem, is that of [9] 

and [15]. The work reported here extends these works by 

presenting extensive experimental results concerning the 

performance of MARL, providing evidence to the efficacy of 

the methods in real-world ATM settings. 

VII. CONCLUDING REMARKS 

In this paper we formulated the problem of resolving demand-
capacity imbalances (DCB) in ATM as a coordination problem 
between agents controlling a multiagent MDP. We then 
proposed the use of MARL techniques to solve this problem, as 
a new paradigm for resolving DCB imbalances at the pre-
tactical phase of operations. Our methods employ a novel, 
generic reward function that takes into account the agents' 
participation in hotspots, and also the strategic cost of delay.  

We demonstrated the effectiveness of our methods by 
evaluating them on real-world scenarios encompassing 
thousands of agents in complex / dynamic settings. 
Experimental results in real-world problems show the potential 
of the proposed methods, in terms of efficiency (i.e. speed of 
convergence) and efficacy (in terms of quality of solutions 
achieved). In few words, collaborative MARL methods are 
promising to resolving real-world complex DCB problems in 
ATM. 

More than that, we envisage the work laid out in this paper 
to be seen as a first step towards devising agent-based methods 
for prescribing the effect of traffic to correlated aircraft 
trajectories, contributing to the transition to a trajectory-based 
air-traffic management paradigm. This will hopefully help 
overcome the shortcomings of the currently used ATM 
paradigm, and as such, could in time allow commercial 
aircrafts “to fly their preferred trajectories without being 
constrained by airspace configurations”1.  
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